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Abstract By generalizing a model previously proposed, a classical nonrelativistic U(1) ×
U(1) gauge field model for the electromagnetic interaction of composite particles in (2 + 1)

dimensions is constructed. The model contains a Chern–Simons U(1) field and the electro-
magnetic U(1) field, and it describes both a composite boson system or a composite fermion
one. The second case is considered explicitly. The model includes a topological mass term
for the electromagnetic field and interaction terms between the gauge fields. By follow-
ing the Dirac Hamiltonian formalism for constrained systems, the canonical quantization
for the model is realized. By developing the path integral quantization method through the
Faddeev–Senjanovic algorithm, the Feynman rules of the model are established and its dia-
grammatic structure is discussed. The Becchi–Rouet–Stora–Tyutin formalism is applied to
the model. The obtained results are compared with the ones corresponding to the previous
model.

Keywords Quantum field theory · Composite bosons and fermions

1 Introduction

As is well-known, the composite bosons [17, 18, 37, 38, 42, 43, 46, 49–52, 58, 59] and
fermions [19–21, 23, 25–36, 39, 53] (CB, CF) theory occupies a preferential position in the
description of the quantum Hall effect and its integer and fractional versions.

For this reason, we postulated [40] a classical nonrelativistic U(1) × U(1) gauge field
model that describes the electromagnetic interaction of composite particles in (2 + 1) di-
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mensions. This model contains two U(1) gauge fields, a Chern–Simons (CS) field aμ [2,
57, 59] and the electromagnetic field Aμ.

Furthermore, we carried out the canonical quantization for the model. This was done by
following the prescriptions of the Dirac Hamiltonian method for constrained systems [8, 9,
54].

Also, we developed the path integral quantization procedure by means of the Faddeev–
Senjanovic (FS) algorithm [10, 48], used when the system has first- and second-class con-
straints. This enabled us to find the Feynman rules of the model.

Likewise, we studied a reduced version of the above model similar to one used within
the framework of condensed matter [21].

On the other hand, we implemented the Becchi–Rouet–Stora–Tyutin (BRST) formalism
to the model [4, 5, 15, 16, 22, 41, 54, 56]. We found that the generating functional obtained
from this algorithm is equivalent to that found by following the FS method, as it should be
expected.

In that paper, we considered explicitly the CF case.
As we suggested in that paper, an interesting point to take into account is to generalize

the proposed model by adding different types of terms to the Lagrangian density.
In the present paper, we consider the following new terms:

(i) A topological mass term for the electromagnetic field.
(ii) Interaction terms between the CS and electromagnetic fields.

Furthermore, we analyze the resulting model following the same steps as the ones per-
formed in [40] and we compare the obtained results with the ones corresponding to the
original model.

We must point out that the present model does not try to be the most general model
for composite particles within the framework of field theory. Merely, this model and the
ones corresponding to Manavella [40] constitute generalizations of the model proposed by
Halperin [21].

In this sense, in particular, we do not endow the CS field with topological mass, in order
to preserve both the dynamics and the nature established for this field in [21].

The paper is organized as follows: In Sect. 2, we present our classical model and we
perform its canonical quantization by means of the Dirac method. Afterwards, in Sect. 3,
by developing the path integral quantization method through the FS algorithm, we establish
the Feynman rules of the model and we analyze its diagrammatic structure. Next, in Sect. 4,
we apply the BRST formalism to the model. Later on, in Sect. 5, we compare the obtained
results with the ones corresponding to Manavella [40]. Finally, in Sect. 6, we display our
conclusions and outlook.

2 Classical Model and Canonical Quantization

As we said, we had postulated [40] a classical nonrelativistic field model with U(1) × U(1)

gauge symmetry for the electromagnetic interaction of composite particles in (2+1) dimen-
sions. We analyzed explicitly a CF system. We assumed that this system can be described
by means of the following singular Lagrangian density:

L = Lem
cf +Lem, (2.1)
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where Lem
cf is written as

Lem
cf = iψ†D0ψ + 1

2mb

ψ† �D2ψ − μψ†ψ + 1

4πφ̃
εμνρaμ∂νaρ (2.2a)

and Lem reads

Lem = −1

4
FμνF

μν. (2.2b)

In (2.2), the Greek indices take the values μ,ν,ρ = 0,1,2.
We employed natural units where � = c = 1. The Minkowskian metric used was gμν =

diag(1,−1,−1) and ε012 = ε12 = 1.
In (2.2a), the covariant derivative, containing both the CS U(1) gauge field aμ and the

electromagnetic U(1) gauge field Aμ, is written as Dμ = ∂μ − iaμ − ieAμ (the electron
charge is taken as −e) and furthermore �D2 = D2

1 + D2
2 . The matter field ψ is a charged

spinorial field describing CF. mb and μ are the band mass and the chemical potential of the
electrons, respectively. φ̃ is the strength of the flux tube, in units of the flux quantum 2π .
(The fictitious charge of each particle that interacts with the fictitious gauge field has been
chosen to have unit strength.)

In (2.2b), Fμν is the electromagnetic field tensor.
By using the expression for the covariant derivative, we could rewrite (2.2a) as

Lem
cf = i

τ + 1

2
ψ† ∂0ψ + i

τ − 1

2
∂0ψ

†ψ + ψ†(a0 + eA0)ψ + 1

2mb

ψ† �D2ψ − μψ†ψ

+ 1

4πφ̃
εμνρaμ∂νaρ. (2.3)

In this equation, the kinetic fermionic term is written in the general form by using the arbi-
trary parameter τ [54].

On the other hand, it is known that the addition of a CS term to the Maxwell action
leads to the topologically massive (2 + 1)-dimensional electrodynamics [24]. In that theory,
a modified Gauss law appears with the result that any charged particle carries a magnetic
flux proportional to its charge.

In the present paper, as it was proposed in the introduction, we consider a topological
mass term for the electromagnetic field. Consequently, we use the electrodynamics above
mentioned.

Besides, as we said, we introduce in the Lagrangian density interaction terms between
the gauge fields.

So, we consider the following singular Lagrangian density, more general than the one
given by (2.1):

Lg = Lem
cf +Ltm +Lint, (2.4)

where Lem
cf is given by (2.3) and

Ltm = 1

2σ
εμνρAμ∂νAρ − 1

4
FμνF

μν, (2.5a)

Lint = ζ
e

mb

εμνρ(aμ∂νAρ + Aμ∂νaρ) + η
e

mb

fμνF
μν. (2.5b)
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The first term on the right-hand side of (2.5a) is the topological mass term for the electro-
magnetic field. The topological mass is given by 2π/σ and the real magnetic flux bound to
the electrons is eσ/2π .

In (2.5b), Lint is the Lagrangian density corresponding to the interaction between the
gauge fields and fμν is the CS field tensor. Furthermore, in that equation, the CS term is
written in such a way to obtain symmetric expressions for the canonically conjugate mo-
menta corresponding to the gauge fields.

Now, we are going to develop the Dirac canonical quantization procedure for the model.
The momenta P I = (pμ,P ν,π†

α,πβ) canonically conjugate to the independent dynam-
ical field variables AI = (aμ,Aν,ψα,ψ

†
β), respectively, are defined by P I = δL/δȦI . In

these equations, the compound index I runs over the components of the different field vari-
ables and the new Greek indices take the values α,β = 1,2.

The momenta have the following expressions:

p0 = 0, (2.6a)

pi = εij

(
1

4πφ̃
aj + ζ

e

mb

Aj

)
+ 2η

e

mb

F 0i , (2.6b)

P 0 = 0, (2.6c)

P i = εij

(
1

2σ
Aj + ζ

e

mb

aj

)
+ 2η

e

mb

f 0i + F i0, (2.6d)

π†
α = −i

τ + 1

2
ψ†

α, (2.6e)

πα = i
τ − 1

2
ψα, (2.6f)

where the Latin indices take the values i, j = 1,2.
The nonvanishing fundamental equal-time (x0 = y0) Bose–Fermi brackets [6, 7] are

given by

[aμ(x),pν(y)]− = δν
μδ(�x − �y), (2.7a)

[Aμ(x),P ν(y)]− = δν
μδ(�x − �y), (2.7b)

[ψα(x),π
†
β(y)]+ = −δαβδ(�x − �y), (2.7c)

[ψ†
α(x),πβ(y)]+ = −δαβδ(�x − �y), (2.7d)

where we have used the notation [. , .]∓ to point out brackets between bosonic and fermionic
Grassmann variables, respectively.

From (2.6), we find the following primary constraints:

Φ0
a = p0 ≈ 0, (2.8a)

Φ0
A = P 0 ≈ 0, (2.8b)

Ω†
α = π†

α + i
τ + 1

2
ψ†

α ≈ 0, (2.8c)

Ωα = πα − i
τ − 1

2
ψα ≈ 0, (2.8d)



2872 Int J Theor Phys (2007) 46: 2868–2886

where α = 1,2.
The canonical Hamiltonian density is defined by Hc = ȧμpμ + ȦμP μ + ψ̇π† + ψ̇†π −L.

By using (2.6), we have that

Hc = mb

2ηe

(
mb

4ηe
pi + P i

)
pi + mb

2ηe

[(
ζe

mb

+ mb

8πφ̃ηe

)
pj + 1

4πφ̃
Pj

]
εij ai

+ mb

8πφ̃ηe

(
ζe

mb

+ mb

16πφ̃ηe

)
aia

i + ∂ia0p
i + ∂iA0P

i − 1

4πφ̃
εij a0∂iaj − ηe

mb

fijF
ij

+ 1

4
FijF

ij − ψ†(a0 + eA0)ψ − 1

2mb

ψ† �D2ψ + ζ

4η

(
1

σ
+ ζ

2η

)
AiA

i

+ ζ

2η
εijAiPj + mb

4ηe

(
1

σ
+ ζ

η

)
εijAipj − ζe

mb

εijA0∂iaj + μψ†ψ

+ mb

2ηe

[
ζ

8πφ̃η
+ 1

8πφ̃σ
+

(
ζe

mb

)2]
ai A

i − 1

2σ
εijA0∂iAj − ζe

mb

εij a0∂iAj . (2.9)

Furthermore, the primary Hamiltonian density is given by

Hp = Hc + λaΦ
0
a + λAΦ0

A + λ†
αΩα + Ω†

αλα, (2.10)

where λa and λA are bosonic Lagrange multipliers and λ†
α and λα are fermionic ones.

Now, we must impose the consistency condition on the primary constraints. Thus, we
find the following secondary constraints:

Φ1
a = [Φ0

a ,Hp] = ∂ip
i + εij

(
1

4πφ̃
∂iaj + ζe

mb

∂iAj

)
+ ψ†ψ ≈ 0, (2.11a)

Φ1
A = [Φ0

A,Hp] = ∂iP
i + εij

(
1

2σ
∂iAj + ζe

mb

∂iaj

)
+ eψ†ψ ≈ 0, (2.11b)

where Hp = ∫
d2xHp is the primary Hamiltonian.

It is easy to see that (2.11a), (2.11b) are the time components of the equations of motion
corresponding to aμ and Aμ, respectively.

When the consistency on the constraints (2.8c), (2.8d) is implemented, the Lagrange
multipliers λ†

α and λα , α = 1,2, appearing in (2.10), remain determined, respectively. Fur-
thermore, when the consistency on the constraints (2.11) is imposed, the obtained equations
are satisfied automatically. Therefore, there are no further constraints.

Next, we find that the constraints (2.8a), (2.8b) are first-class whereas the constraints
(2.8c), (2.8d) and (2.11) are second-class. However, these last ones do not constitute a mini-
mal set of second-class constraints. This is due to the determinant of the matrix constructed
with the Bose–Fermi brackets between these constraints vanishes.

So, there must be at least two linear combinations of second-class constraints which are
independent of the above first-class constraints and these are also first-class. It is easy to see
that there are only two of such combinations, which are

Σ1 = eΦ1
a − Φ1

A

= e

(
1

4πφ̃
− ζ

mb

)
εij ∂iaj +

(
ζe2

mb

− 1

2σ

)
εij ∂iAj + e∂ip

i − ∂iP
i ≈ 0, (2.12a)
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Σ2 = ψ†Ω − ψΩ† − i

e
Φ1

A

= ψ†π − ψπ† − i

e

(
ζe

mb

εij ∂iaj + 1

2σ
εij ∂iAj + ∂iP

i

)
≈ 0. (2.12b)

Therefore, two second-class constraints can be eliminated and thus the final set of con-
straints is the following:

(i) The bosonic first-class constraints defined by the functions Σ1,Σ2,Σ3 = Φ0
a , and Σ4 =

Φ0
A. As is well-known, these constraints are related to the symmetries of the gauge group

U(1) × U(1) of the model.
(ii) The fermionic second-class constraints defined by Ω†

α and Ωα .

Now, we must go from the Bose–Fermi brackets to the Dirac ones D(F) with regard
to the matrix F constructed with the Bose–Fermi brackets between the second-class con-
straints. The D(F) bracket between the functions R(x) and S(y) is defined by

[R(x), S(y)]D(F) = [R(x), S(y)]
−

∫
d2ud2v[R(x),ΓI (u)]F−1

IJ (�u, �v)[ΓJ (v), S(y)], (2.13)

where F−1 is the inverse of the matrix F whose elements are [ΓI ,ΓJ ], I, J = 1, . . . ,4, and
Γ1 = Ω

†
1 ,Γ2 = Ω

†
2 ,Γ3 = Ω1, and Γ4 = Ω2 are the second-class constraints.

It is easy to see that the matrix F is given by

F =
⎛
⎜⎝

0 0 −i 0
0 0 0 −i

−i 0 0 0
0 −i 0 0

⎞
⎟⎠ δ(�x − �y). (2.14)

The determinant of F holds

detF = δ(�x − �y) (2.15)

and its inverse reads

F−1 =
⎛
⎜⎝

0 0 i 0
0 0 0 i

i 0 0 0
0 i 0 0

⎞
⎟⎠ δ(�x − �y). (2.16)

On the other hand, the extended Hamiltonian is defined as follows:

He =
∫

d2x(Hc + ρaΣa) −
∫

d2xd2yΓI (x)F−1
IJ (�x, �y)[ΓJ (y),Hc], (2.17)

where ρa , a = 1, . . . ,4, are bosonic Lagrange multipliers.
Once we impose the D(F) brackets, we must take the second-class constraints as equa-

tions strongly equal to zero. So, the second term on the right-hand side of (2.17) vanishes
and then the extended Hamiltonian remains in the following way:

He =
∫

d2x(Hc + ρaΣa). (2.18)
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Furthermore, the following field variables remain determined:

π†
α = −i

τ + 1

2
ψ†

α, (2.19a)

πα = i
τ − 1

2
ψα. (2.19b)

From (2.13), we find the following nonvanishing D(F) brackets:
field-field:

[ψ†
α(x),ψβ(y)]D(F)

+ = −iδαβδ(�x − �y), (2.20a)

field-momentum:

[aμ(x),pν(y)]D(F)
− = δν

μδ(�x − �y), (2.20b)

[Aμ(x),P ν(y)]D(F)

− = δν
μδ(�x − �y). (2.20c)

Now, we must calculate the final Dirac brackets. For this, we must search for admissible
gauge-fixing conditions Θa ≈ 0, one for each first-class constraint. These subsidiary condi-
tions must verify that det([ΔA,ΔB ]) �≈ 0, where A,B = 1, . . . ,8 and Δa = Σa,Δ4+a = Θa ,
and must be compatible with the equations of motion.

We choose the following gauge-fixing conditions:

Θ1 = ∂iai ≈ 0, (2.21a)

Θ2 = ∂iAi ≈ 0, (2.21b)

Θ3 = ∇2

(
A0 − 2ηe

mb

a0

)
+ εij

(
ζe

mb

∂iaj + 1

2σ
∂iAj

)
− ∂iP

i ≈ 0, (2.21c)

Θ4 = ∇2A0 − mb

2ηe

[
εij

(
1

4πφ̃
∂iaj + ζe

mb

∂iAj

)
− ∂ip

i

]
≈ 0, (2.21d)

which satisfy the above requirements.
The Dirac bracket between the functions R(x) and S(y) is defined by

[R(x), S(y)]D = [R(x), S(y)]D(F)

−
∫

d2ud2v[R(x),ΔA(u)]D(F)G−1
AB(�u, �v)[ΔB(v), S(y)]D(F), (2.22)

where G−1 is the inverse of the matrix G whose elements are [ΔA,ΔB ], A,B = 1, . . . ,8.
It is easy to show that the matrix G is written as follows:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 e −1 0 0
0 0 0 0 0 −ie−1 0 0
0 0 0 0 0 0 u 0
0 0 0 0 0 0 −1 −1

−e 0 0 0 0 0 0 −u−1

1 ie−1 0 0 0 0 1 0
0 0 −u 1 0 −1 0 0
0 0 0 1 u−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∇2δ(�x − �y), (2.23)

where u = 2ηe/mb.
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The determinant of G holds

detG = −u2(∇2)8δ(�x − �y) �≈ 0 (2.24)

and its inverse matrix is written as

G−1 = 1

4π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 e−1u−2 (eu)−1 −e−1 0 0 0
0 0 v iu−1 −i −ie 0 0

−e−1u−2 −v 0 0 0 0 −u−1 u−1

−(eu)−1 −iu−1 0 0 0 0 0 1
e−1 i 0 0 0 0 0 0
0 ie 0 0 0 0 0 0
0 0 u−1 0 0 0 0 0
0 0 −u−1 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

|�x − �y| ,

(2.25)
where v = iu−2(1 + eu).

Once we impose the Dirac brackets, we must take the first-class constraints and the
gauge-fixing conditions as equations strongly equal to zero. So, the second term on the
right-hand side of (2.18) vanishes and then the extended Hamiltonian coincides with the
canonical one. Moreover, the following field variables remain determined:

p0 = 0, (2.26a)

P 0 = 0, (2.26b)

a0(x) = mb

8πηe

∫
d2y

×
[( ζe

mb
+ mb

8πφ̃ηe
)εij ∂iaj + 1

2 ( 1
σ

+ ζ

η
)εij ∂iAj − mb

2ηe
∂ip

i − ∂iP
i](y)

|�x − �y| , (2.26c)

A0(x) = mb

8πηe

∫
d2y

[εij ( 1
4πφ̃

∂iaj + ζ e

mb
∂iAj ) − ∂ip

i](y)

|�x − �y| . (2.26d)

From (2.22), we obtain the following nonvanishing Dirac brackets:
field-field:

[ψ†
α(x),ψβ(y)]D+ = −iδαβδ(�x − �y), (2.27a)

field-momentum:

[ai(x),pj (y)]D− = [Ai(x),P j (y)]D− = δ
j

i δ(�x − �y) − 1

4π
∂x

i ∂xj 1

|�x − �y| , (2.27b)

momentum-momentum:

[p1(x),p2(y)]D− = − 1

4πφ̃
δ(�x − �y), (2.27c)

[pi(x),P j (y)]D− = − ζe

mb

εij δ(�x − �y), (2.27d)

[P 1(x),P 2(y)]D− = − 1

2σ
δ(�x − �y). (2.27e)

So, the dynamics of the classical model remains completely specified.
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Finally, the canonical quantization is realized by replacing the Dirac brackets between
field variables by the (anti) commutators between field operators according to the rule

[O1(x),O2(y)]D → −i[Ô1Ô2 − (−1)|O1||O2|Ô2Ô1], (2.28)

where |Oi | = 0(1)(mod 2) when Oi is a bosonic (fermionic) field variable, i = 1,2.
On the other hand, let us note that a CB system can be treated similarly. In this case, the

matter field is a charged scalar field. So, the fermionic second-class constraints (2.8c), (2.8d)
turn into bosonic second-class ones. Furthermore, the fermionic brackets (2.7c), (2.7d),
(2.20a), and (2.27a) turn into bosonic ones. Thus, after (2.28) is imposed, the Dirac brackets
(2.27a) become commutators.

3 Path Integral Quantization, Feynman Rules, and Diagrammatic Structure

We develop the Feynman path integral quantization method according to the FS formal-
ism due to the fact that the model has first- and second-class constraints. So, we write the
generating functional for the model by means of the following path integral:

Z =
∫

DaμDpμ
DAνDP ν

DψαDπ†
αDψ

†
βDπβδ(ΓI )(detF)1/2δ(ΔA)(detG)1/2

× exp

[
i

∫
d3x(ȧμpμ + ȦμP μ + ψ̇π† + ψ̇†π −He)

]
, (3.1)

where δ(ΓI ) and δ(ΔA) are products of Dirac delta functions and the Hamiltonian density
He was given in (2.17).

The determinant of the matrix F does not depend neither on the independent dynamical
field variables nor on the corresponding canonically conjugate momenta (see (2.15)). Thus,
we include (detF)1/2 in the path integral normalization factor. The same occurs with the
other determinant appearing in (3.1) (see (2.24)).

By means of the Dirac deltas δ(Δ3), δ(Δ4), δ(Γ1), δ(Γ2), δ(Γ3), and δ(Γ4), we calculate
the path integrals over p0,P 0,π

†
1 ,π

†
2 ,π1, and π2, respectively.

Moreover, we can write δ(Δ7) = δ(a0 − mb

2ηe
A0 − f ) and δ(Δ8) = δ(A0 − g), where

f (x) = mb

8πηe

∫
d2y

(
ζe

mb
εij ∂iaj + 1

2σ
εij ∂iAj − ∂iP

i)(y)

|�x − �y| , (3.2a)

g(x) = mb

8πηe

∫
d2y

( 1
4πφ̃

εij ∂iaj + ζ e

mb
εij ∂iAj − ∂ip

i)(y)

|�x − �y| , (3.2b)

and so we make the integrations over a0 and A0.
On the other hand, by using the Fourier integral corresponding to the Dirac delta, we

have that δ(Δn) = ∫
DΛn exp(i

∫
d3xΛnΔn), n = 1,2.

Consequently, the generating functional takes the form

Z =
∫

DaiDpi
DAjDP j

DψαDψ
†
βDΛnδ(∂

lal)δ(∂
mAm) exp

(
i

∫
d3xL∗

)
, (3.3)

where

L∗ = ȧip
i + ȦiP

i + i

2
[(τ − 1)ψ̇†ψ−(τ + 1)ψ̇ψ†] −H∗, (3.4)
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with

H∗ = H∗
e − ΛnΔn, (3.5)

where H∗
e is the original He subject to the integrations that we have just done.

Due to the arbitrariness of the Lagrange multipliers Λn in (3.5), it is possible to make a
scale change in the corresponding integration variables in such a way that H∗ = Hc [54].

As it is can be seen, the path integrals over pi and P j are Gaussian. Therefore, these
integrals can also be calculated.

So, the generating functional remains

Z =
∫

DaμDAνDψαDψ
†
βδ(∂lal)δ(∂

mAm) exp

(
i

∫
d3xLg

)
, (3.6)

where Lg is the starting Lagrangian density given by (2.4).
This result was expected. Nevertheless, we think necessary to start formally from the

canonical path integral (3.1) and to show that it is possible to arrive at the Lagrangian path
integral (3.6). This is because, as is well-known, there are many field theories in which
the simple Lagrangian path integral can not be obtained from the canonical one (see, for
instance, [47] and references therein).

Finally, we use the Faddeev–Popov trick. So, we write the gauge-fixing conditions in
the form ∂μaμ(x) = ca(x) and ∂μAμ(x) = cA(x) (generalized Lorentz gauge). By con-
sidering the first of these conditions, we write δ[∂μaμ(x) − ca(x)] = ∫

Dca(x) exp{i λa

2 ×∫
d3x[∂μaμ(x)]2}, with a Gaussian weight independent of ca(x). Therefore, the integrand

in (3.6) does not depend on ca(x) and the integration over this quantity can be performed, ap-
pearing exp{i λa

2

∫
d3x[∂μaμ(x)]2} instead of δ[∂μaμ(x) − ca(x)]. We proceed analogously

for the second condition.
In this way, the generating functional remains

Z =
∫

DaμDAνDψαDψ
†
β exp

(
i

∫
d3xLeff

)
, (3.7)

where the Lagrangian density Leff is expressed in terms of the independent dynamical field
variables, aμ,Aν,ψα , and ψ

†
β , and so constitutes the effective Lagrangian density of the

model. This is given by

Leff = Lg +Lfix, (3.8)

where

Lfix = λa

2
(∂μaμ)2 + λA

2
(∂μAμ)2. (3.9)

Now, we are going to establish the Feynman rules of the model [55].
Since the interaction terms (2.5b) are quadratic, these must contribute to the propagators.

Therefore, the only possibility is to consider a unique auxiliary extended quantity XΛ =
(aμ,Aν), where the compound index Λ runs over the components of the field variables [14].
In this way, the Lagrangian density (3.8), written in terms of this quantity, can be partitioned
as follows:

Leff = Leff(XΛ) +Leff(ψ,ψ†) +Lint
eff(XΛ,ψ,ψ†), (3.10)
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where

Leff(XΛ) = 1

2
XΛ(D−1)ΛΠXΠ, (3.11a)

Leff(ψ,ψ†) = ψ†G−1ψ, (3.11b)

Lint
eff(XΛ,ψ,ψ†) = ψ†VΛXΛψ + ψ†XΛWΛΠXΠψ. (3.11c)

The matrix D−1 appearing in (3.11a) is nondegenerate. As a result, the propagator
DΛΠ(k) of the gauge field XΛ, in the momentum space, can be obtained. This is given
by

DΛΠ(k) =
(

Mμν(k) Lμν(k)

Lμν(k) Nμν(k)

)
, (3.12)

where

Mμν(k) = μ1(k
2)gμν + μ2(k

2)kμkν − iμ3(k
2)εμνρk

ρ, (3.13a)

Lμν(k) = λ1(k
2)gμν + λ2(k

2)kμkν − iλ3(k
2)εμνρk

ρ, (3.13b)

Nμν(k) = ν1(k
2)gμν + ν2(k

2)kμkν − iν3(k
2)εμνρk

ρ. (3.13c)

In (3.13), the coefficients are given by

μ1(k
2) = (4a2 − k2)[c(4ad + c) + d2k2]

α(k2)
, (3.14a)

μ2(k
2) = 1

λa

β(k2)

k4α(k2)
, (3.14b)

μ3(k
2) = 1

2

(4a2 − k2)[4ae + (4ad2 + g)k2]
k2α(k2)

, (3.14c)

λ1(k
2) = −4a2[2d(ab + c2) + bc] + [2d(ab + c2 + 4a2d2) + bc]k2 − 2d3k4

α(k2)
, (3.14d)

λ2(k
2) = −λ1(k

2)

k2
, (3.14e)

λ3(k
2) = −8a2ce + 2(ce + 2a2dh)k2 − dhk4

k2α(k2)
, (3.14f)

ν1(k
2) = bg

4a2 − k2

α(k2)
, (3.14g)

ν2(k
2) = 1

λA

γ (k2)

k4(4a2 − k2)α(k2)
, (3.14h)

ν3(k
2) = 2b

16a4e + 8a2(2a2d2 − e)k2 + (e − 8a2d2)k4 + d2k6

k2(4a2 − k2)α(k2)
, (3.14i)

where k2 = kμkμ and

α(k2) = 16a2e2 − 4(e2 + a2f )k2 + (16a2d4 + f )k4 − 4d4k6, (3.15a)
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β(k2) = 16a2e2 − 4[e2 + a2f + a2c(c + 4ad)λa]k2

+{16a2d4 + f + [c2 + 4ad(c − ad)]λa}k4 + d2(λa − 4d2)k6, (3.15b)

γ (k2) = 64a4e2 − 16a2(2e2 + a2f + a2bgλA)k2 + 4[e2 + 2a2(8a2d4 + f + bgλA)]k4

− (32a2d4 + f + bgλA)k6 + 4d4k8. (3.15c)

In (3.14) and (3.15), we have considered a = (2σ)−1, b = (4πφ̃)−1, c = ζ e

mb
, d = ηe

mb
,

e = c2 − ab,f = b2 + 8d(bc + c2d + abd), g = b + 4cd , and h = b + 2cd .
In (3.11b), G is the propagator of the matter field. In the momentum space, this is given

by

G( �p,E) =
(

E−μ − �p2

2mb

)−1

, (3.16)

where E is the particle energy, �p its ordinary momentum, and �p2 = p2
1 + p2

2 .
In (3.11c), the vector VΛ gives the 3-point vertex of the model. In the momentum space,

this reads

VΛ =
(

1,
1

mb

qi, e,
e

mb

qj

)
. (3.17)

Finally, in (3.11c), the matrix WΛΠ gives the 4-point vertex. This is written as

WΛΠ = − 1

2mb

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 0 0 e 0
0 0 1 0 0 e

0 0 0 0 0 0
0 e 0 0 e2 0
0 0 e 0 0 e2

⎞
⎟⎟⎟⎟⎟⎠

. (3.18)

Next, the Feynman rules for propagators and vertices can be written:
(i) Propagators. We associate with the propagator of the gauge field XΛ a wavy line

≡ DΛΠ(k)

and with the propagator of the fermionic matter field ψ a straight line

≡ G( �p,E).

(ii) Vertices. So, the 3- and 4-point vertices of the model are

≡ VΛ, ≡ WΛΠ ,

respectively.
The remaining Feynman rules are the usual ones.
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Now, in the framework of the perturbative theory, a power-counting analysis shows that
the primitively divergent diagrams of the model are the following:

, ,

, ,

and a graph similar to the last one with the electron arrows reversed.
We do not develop the regularization and renormalization procedures of the model in

this paper. However, it can be shown that this belongs to the class of theories with only a
finite number of divergent diagrams. So, the above procedures remain reduced to the ones
corresponding to a superrenormalizable theory.

On the other hand, as is well-known, by adding higher-derivative terms for the gauge
fields to the Lagrangian density of a model, preserving its gauge invariance, the ultraviolet
behavior of the propagators corresponding to the above fields is improved and therefore
the divergence of those diagrams in which these propagators appear can be removed [1, 3,
11–14, 44, 45]. Therefore, we find it interesting to consider this procedure for the present
model.

We will discuss these questions in a future paper.

4 BRST Formalism

Now, we are going to apply the BRST formalism to the model.
The following brackets are all D(F) ones. So, hereafter we will write these brackets

without the superscription “D(F)”.
We can write

[Σa(x),Σb(y)]− = Cc
abΣc(x)δ(�x − �y), (4.1)

with Cc
ab = 0, a, b, c = 1, . . . ,4.

Furthermore, let us note that the canonical Hamiltonian density, given by (2.9), can be
written as follows:

Hc = H0 − a0

(
1

e
Σ1 + iΣ2

)
− ieA0Σ2, (4.2)

where H0 = ∫
d2xH0 verifies

[H0,Σa(x)]− = Db
aΣb(x), (4.3)

with Db
a = 0, a, b = 1, . . . ,4.

On the other hand, due to the arbitrariness of the Lagrange multipliers ρa , the Hamil-
tonian density appearing in (2.18) can also be written in the following way:

He = H0 − ρaΣa. (4.4)
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In the BRST formalism, the multipliers ρa are considered as independent dynamical
field variables, associating with them the corresponding canonically conjugate momenta ξa .
Therefore, it is fulfilled

[ρa(x), ξb(y)]− = δb
aδ(�x − �y). (4.5)

At the same time, the equations ξa = 0, a = 1, . . . ,4, are imposed. Thus, the first-class
constraints obtained in this way generate the gauge transformations ρa → ρa + ua of the
multipliers, in accordance with their arbitrariness.

Therefore, in this context, the independent dynamical field variables of the model are

AF = (aμ,Aν,ψα,ψ
†
β, ρa), (4.6)

the corresponding canonically conjugate momenta are

PF = (pμ,P ν,π†
α,πβ, ξa), (4.7)

and the first-class constraints are defined by the functions

ΞA = (Σa, ξb). (4.8)

In these equations, the compound indices F and A run over the components of the different
field variables.

So, (4.1) and (4.3) take the form

[ΞA(x),ΞB(y)]− = CC
ABΞC(x)δ(�x − �y), (4.9a)

[H0,ΞA(x)]− = DB
AΞB(x), (4.9b)

respectively, where all the coefficients CC
AB and DB

A vanish.
The BRST-invariant Hamiltonian density is given by

H1 = H0 + PBDB
AQA = H0, (4.10)

where QA are the fermionic ghost field variables (Majorana spinors) and PA their canonically
conjugate momenta. Thus, these field variables satisfy

[QA(x),PB(y)]+ = δB
Aδ(�x − �y). (4.11)

The BRST-invariant gauge-fixed Hamiltonian density is written as

Hχ (x) = H1(x) −
∫

d2y[χ(x),Q(y)]+ = H0(x) −
∫

d2y[χ(x),Q(y)]+, (4.12)

where χ = PAΥ A is the gauge-fixing variable, with

Υ A = −(ρa,Θb). (4.13)

In (4.12), Q is the BRST generator defined as

Q = ΞAQA + 1

2
PCCC

ABQAQB = ΞAQA. (4.14)
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We assume that the set of ghosts can be partitioned into two subsets

QA = (qa,pb), (4.15a)

PA = (p†a,q†b), (4.15b)

where we have used the symbol “†” to point out antighosts. So, it is fulfilled

[qa(x),p†b(y)]+ = δb
aδ(�x − �y), (4.16a)

[pa(x),q†b(y)]+ = δb
aδ(�x − �y). (4.16b)

Consequently, Hχ remains

Hχ (x) = H0(x) + p†
a(x)pa(x) + Σa(x)ρa(x) + ξa(x)Θa(x)

+q†
a(x)

∫
d2y[Θa(x),Σb(y)]−qb(y). (4.17)

Since [Θa(x),Σb(y)]− = f a
b ∇2δ(�x − �y), where f a

b are the elements of the matrix

f a
b =

⎛
⎜⎜⎝

−e 0 0 0

1 i
e

0 0

0 0 − 2ηe

mb
1

0 0 0 1

⎞
⎟⎟⎠ , (4.18)

the last term on the right-hand side of (4.17) remains f a
b q†

a(x)∇2qb(x).
Since the system has first- and second-class constraints, as it was shown in Sect. 2, the

BRST generating functional is given by the following path integral [15, 22]:

Zχ =
∫

DAFDPF
DQADPAδ(ΓI )(detF)1/2 exp

(
i

∫
d3xLχ

)
, (4.19)

where detF is given by (2.15) and Lχ is the BRST Lagrangian density defined by

Lχ = ȦFPF + PAQ̇A −Hχ . (4.20)

Now, we are going to prove that the expression (4.19) for the generating functional coin-
cides with the one constructed by using the FS method, given by (3.1).

The path integrals over pa and p†a are Gaussian and they are performed easily.
Next, we must pass to a nonrelativistic gauge [22, 54]. The steps to do so are the fol-

lowing: carry out the replacement Θa → ε−1Θa in the generating functional (4.19), make
a scale change in the integration variables ξa → εξa and q†

a → εq†
a , and pass to the limit

ε → 0 (this is possible due to the Fradkin–Vilkovisky theorem). The outcome is

Zχ =
∫

DaμDpμ
DAνDP ν

DψαDπ†
αDψ

†
βDπβDρaDξa

DqaDq†
b

× δ(ΓI )(detF)1/2 exp

(
i

∫
d3xL′

χ

)
, (4.21)

where

L′
χ = ȧμpμ + ȦμP μ + ψ̇π† + ψ̇†π −H0 − Σaρa − ξaΘa − q†

a[Θa,Σb]−qb. (4.22)
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The integrations over ρa and ξa are elementary and the one corresponding to the last
term of (4.22) is given by

∫
DqaDq†b exp

[
−i

∫
d3xq†

a(x)

∫
d2y[Θa(x),Σb(y)]−qb(y)

]

= − i

2π
(detG)1/2, (4.23)

where detG is given by (2.24).
Therefore, the final result coincides with the expression (3.1) for the generating func-

tional, as we said. Thus, we conclude that both procedures can be considered equivalent.

5 Comparison Between the Present and Original Models

Now, we are going to compare the obtained results with the ones corresponding to the orig-
inal model [40].

In the present model, different from the original one, we have assumed that the real
magnetic flux is attached to the particles. This is due to the existence of the topological
mass term for the electromagnetic field, given by the first term on the right-hand side of
(2.5a). Besides, we have considered interaction terms between the gauge fields, given by
(2.5b).

On the other hand, as it can be shown, by removing the interaction terms in the La-
grangian density (2.4), we obtain a new model with the following constraint structure:

(i) The bosonic first-class constraints given by

Σ ′
1 = − 1

2σ
εij ∂iAj + e∂ip

i − ∂iP
i + e

4πφ̃
εij ∂iaj ≈ 0, (5.1a)

Σ ′
2 = − i

e

(
1

2σ
εij ∂iAj + ∂iP

i

)
+ ψ†π − ψπ† ≈ 0, (5.1b)

and the ones of the same kind defined by the functions Σ3 and Σ4.
(ii) The fermionic second-class constraints defined by Ω†

α and Ωα and the new bosonic
second-class constraints given by (see (2.6b))

Φ0i
2 = pi − 1

4πφ̃
εij aj ≈ 0. (5.2)

Now, by removing the topological mass term, we get obviously the original model. Its
constraint structure is obtained directly from the one above by canceling the corresponding
terms in (5.1).

On the other hand, as we noted in Sect. 3, due to the presence of the interaction terms
in the Lagrangian density, it was necessary to consider a unique bosonic propagator. As we
just said, by canceling these terms, we obtain a new model. As it is easy to see, for this new
model, the extradiagonal blocks Lμν of the propagator (3.12) cancel and the diagonal ones
are written

Mμν(k) = 1

λa

kμkν

k4
+ 2iπφ̃εμνρ

kρ

k2
, (5.3a)
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Nμν(k) = gμν

1
1
σ 2 − k2

+
(

1

λA

− k2

1
σ 2 − k2

)
kμkν

k4
+ iεμνρ

kρ

σ ( 1
σ 2 − k2)k2

. (5.3b)

In these equations, Mμν and Nμν are the CS and electromagnetic field propagators, respec-
tively.

Next, the propagators of the original model can be obtained directly by removing the
terms with topological mass in (5.3b).

As it is easy to note, the propagators (5.3) have the same ultraviolet behavior as the ones
corresponding to the original model.

In inverse order, by removing first the topological mass term in (2.5a), we obtain again a
new model.

In this case, the constraint structure and the bosonic propagator are obtained directly
from the ones corresponding to the general model by means of that removal.

As it is easy to see, the new bosonic propagator has the same ultraviolet behavior as the
one corresponding to the general model.

Next, by removing the interaction terms, we get again the original model.
On the other hand, the original model has two 3-point vertices and three 4-point ones.

Furthermore, in that model, there are thirty-seven primitively divergent diagrams, twenty of
them with two vertices and the rest with three ones. As it can be seen, these results are very
different from the ones obtained in Sect. 3, for the present model.

Consequently, we see that both the constraint structure and the diagrammatic one, for the
present model, are completely different from the ones corresponding to the original model.

Finally, as we said, for both models, the generating functional obtained from the BRST
formalism is equivalent to that found by following the FS method.

6 Conclusions and Outlook

A classical nonrelativistic U(1)×U(1) gauge field model that describes the electromagnetic
interaction of composite particles in (2+1) dimensions has been constructed. This was done
by generalizing the model proposed in [40].

Later on, the canonical quantization was realized. The model under consideration was
analyzed within the framework of the Dirac algorithm.

Next, by following the FS procedure, the path integral quantization method was im-
plemented. This enabled us to establish the Feynman rules of the model and analyze its
diagrammatic structure. The model has two vertices, a 3-point one and the other a 4-point
one.

Afterwards, the BRST formalism was applied to the model. The generating functional
obtained from this mechanism turned out to be equivalent to that found by following the FS
method, as it should be expected.

Finally, the results found were compared with the ones corresponding to the original
model.

The paper was developed considering explicitly the CF case.
In future papers, we will apply the results obtained within the framework of condensed

matter.
Furthermore, we will compare the results found with the ones corresponding to other

models.
On the other hand, as it was mentioned in Sect. 3, we will study the perturbative devel-

opment for the present model. Also, we will analyze the model obtained by adding higher-
derivative terms to the Lagrangian density for the present model.
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